30 research outputs found

    Risk Minimization through Portfolio Replication

    Get PDF
    We use a replica approach to deal with portfolio optimization problems. A given risk measure is minimized using empirical estimates of asset values correlations. We study the phase transition which happens when the time series is too short with respect to the size of the portfolio. We also study the noise sensitivity of portfolio allocation when this transition is approached. We consider explicitely the cases where the absolute deviation and the conditional value-at-risk are chosen as a risk measure. We show how the replica method can study a wide range of risk measures, and deal with various types of time series correlations, including realistic ones with volatility clustering.Comment: 12 pages, APFA5 conferenc

    Divergent estimation error in portfolio optimization and in linear regression

    Full text link
    The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.Comment: 5 pages, 2 figures, Statphys 23 Conference Proceedin

    Portfolio Optimization and the Random Magnet Problem

    Full text link
    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movement of assets are are mutually correlated and therefore knowledge of cross--correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this ``random magnet problem'' are given by the cross-correlation matrix {\bf \sf C} of stock returns. We find that random matrix theory allows us to make an estimate for {\bf \sf C} which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.Comment: 12 pages, 4 figures, revte

    Financial correlations at ultra-high frequency: theoretical models and empirical estimation

    Full text link
    A detailed analysis of correlation between stock returns at high frequency is compared with simple models of random walks. We focus in particular on the dependence of correlations on time scales - the so-called Epps effect. This provides a characterization of stochastic models of stock price returns which is appropriate at very high frequency.Comment: 22 pages, 8 figures, 1 table, version to appear in EPJ

    Accounting for risk of non linear portfolios: a novel Fourier approach

    Full text link
    The presence of non linear instruments is responsible for the emergence of non Gaussian features in the price changes distribution of realistic portfolios, even for Normally distributed risk factors. This is especially true for the benchmark Delta Gamma Normal model, which in general exhibits exponentially damped power law tails. We show how the knowledge of the model characteristic function leads to Fourier representations for two standard risk measures, the Value at Risk and the Expected Shortfall, and for their sensitivities with respect to the model parameters. We detail the numerical implementation of our formulae and we emphasizes the reliability and efficiency of our results in comparison with Monte Carlo simulation.Comment: 10 pages, 12 figures. Final version accepted for publication on Eur. Phys. J.

    Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market

    Get PDF
    What are the dominant stocks which drive the correlations present among stocks traded in a stock market? Can a correlation analysis provide an answer to this question? In the past, correlation based networks have been proposed as a tool to uncover the underlying backbone of the market. Correlation based networks represent the stocks and their relationships, which are then investigated using different network theory methodologies. Here we introduce a new concept to tackle the above question—the partial correlation network. Partial correlation is a measure of how the correlation between two variables, e.g., stock returns, is affected by a third variable. By using it we define a proxy of stock influence, which is then used to construct partial correlation networks. The empirical part of this study is performed on a specific financial system, namely the set of 300 highly capitalized stocks traded at the New York Stock Exchange, in the time period 2001–2003. By constructing the partial correlation network, unlike the case of standard correlation based networks, we find that stocks belonging to the financial sector and, in particular, to the investment services sub-sector, are the most influential stocks affecting the correlation profile of the system. Using a moving window analysis, we find that the strong influence of the financial stocks is conserved across time for the investigated trading period. Our findings shed a new light on the underlying mechanisms and driving forces controlling the correlation profile observed in a financial market

    Visual engagement with urban street edges: insights using mobile eye-tracking

    Get PDF
    This study provides empirical insight into the extent to which pedestrians visually engage with urban street edges and how social and spatial factors impact such engagement. This was achieved using mobile eye-tracking. The gaze distribution of 24 study participants was systematically recorded as they carried out everyday tasks on differing streets. The findings demonstrated that street edges are the most visually engaged component of streets; that street edge visual engagement is impacted by everyday social tasks as well as the spatial and physical materiality of edges on differing streets; and that street edges, which attract a lot of visual engagement while undertaking optional tasks, also attract greater amounts of visual engagement while undertaking necessary tasks. These findings offer new insight into urban street edge engagement from the direct perspective of street inhabitants and in doing so provide greater understanding of how street edges are experienced

    On the feasibility of portfolio optimization under expected shortfall

    No full text
    We address the problem of portfolio optimization under the simplest coherent risk measure, i.e. the expected shortfall. As is well known, one can map this problem into a linear programming setting. For some values of the external parameters, when the available time series is too short, portfolio optimization is ill-posed because it leads to unbounded positions, infinitely short on some assets and infinitely long on others. As first observed by Kondor and coworkers, this phenomenon is actually a phase transition. We investigate the nature of this transition by means of a replica approach.Statistical physics, Finance, Portfolio optimization, Quantitative finance, Correlation modelling, Critical phenomena, Risk measures,
    corecore